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1. Introduction 

An efficient software tool for purposes of simulation of random evolution of the concentration 
distribution of toxic admixtures originally discharged into the atmosphere is presented. The 
main goal of the development is its application as a pivot algorithm of the multiple recalled 
kernel for examination of the model error covariance structure and for Sampling-Importance-
Resampling procedure for online Bayesian tracking of the plume trajectory progression. The 
primary quantity of interest is 3-D distribution of harmful admixtures concentration in the air 
on basis of which all other values in a respective release phase can be derived. In the early 
phase of an accident the cloud is drifting over an observed area and noxious agents (e.g. ra-
dionuclides) are depleted due to various removal mechanisms. Important indirect derived 
variables are for example time integral of the radioactivity concentration in ground-level of 
the air and radioactivity deposited on the ground. Both can be perceived as a certain projec-
tion of the primary 3-D concentration into 2-D. Any handling of 2-D output fields has unique 
association with 3-D trajectories inhere on background. Because of the conjugation, for ex-
ample the real measurements of the activity deposited on terrain can serve as indirect observa-
tions for recursive plume tracking.  

An ensemble of 3-D trajectory realizations offers good basis for uncertainty analysis (UA) 
and studies of sensitivity. These analyses should involve uncertainties due to stochastic char-
acter of input data, insufficient description of real physical processes by parametrization, in-
complete knowledge of submodel parameters, uncertain release scenario, simplifications in 
computational procedure etc. Because of computational feasibility only a limited number of 
the most important random model parameters can be selected for parametrization of the 3-D 
trajectories. The rest of ones are assumed not having a random character and enter the calcula-
tions as invariants represented by their “best estimate” values. The history of each member of 
ensemble (called as “particle”) is always stored and can be easily and quickly reproduced 
when running the environmental model with corresponding recalled set of realization of ran-
dom parameters and other fixed nominal inputs.  

The environmental model of pollution transport is based on segmented plume-puff modifica-
tion of the classical Gaussian approach which can account for hourly changes of meteorologi-
cal conditions and release dynamics. Examination of uncertainty propagation through the 
Segmented Gaussian Plume Model (SGPM) facilitates to follow the recent trends in risk as-
sessment methodology insisting in transition from deterministic procedures to probabilistic 
approach. The results mentioned in this article with a glance are related to both the probability 
approach of consequence assessment and generation of inputs inevitable for assimilation 
(prior physical knowledge included in the background fields and model error covariance 
structure). Real scenario of radioactivity dissemination analysed here demonstrates the com-
plexity of the problem requiring a good degree of understanding. It covers also an introduc-
tion of necessary compromises in order to suppress excessive computational cost.   
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2. Outline of the environmental model SGPM of aerial transport of pollution 

Various models of pollution transport in atmosphere are able to incorporate fundamental fea-
tures of the problem under different approaches. It relates to dimensionality, calculation do-
main and grid resolution, parametrization of respective physical phenomena, initial and 
boundary conditions, intensive computation. Propagation of radioactive discharges in atmos-
phere is described by diffusion equation: 
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Here C represents 3-D distribution of specific radioactivity concentration in air [Bq.m-3 ]. The 
terms on the right side of (1) express in turns advection, turbulent diffusion (with anisotropic 
diffusivity coefficient K), sources of pollution S (point, linear, ...) and β designates sink 
(negative) terms caused by radioactive decay and removal processes of dry and wet deposi-
tions. Several approaches of solution of (1) are developed in dependency on the purpose of 
analysis.  

Even simple, the Gaussian model is consistent with the random nature of turbulence, it is a 
solution of Fickian diffusion equation for constant K and wind advection velocity u, it is 
tuned to experimental data and offers fast basic estimation with acceptable computation effort. 
Proved semi-empirical formulas are available for approximation of important effects like: 

• interaction of the plume with near-standing buildings, 
• momentum and buoyant plume rise during release, 
• power-law formula for estimation of wind speed changes with height,   
• depletion of the plume activity (removal processes of dry and wet deposition, de-

pendency on physical-chemical forms of admixtures and landuse characteristics), 
• inversion meteorological situations, plume penetration of inversion, plume lofting 

above inversion layer, 
• account for small changes in surface elevation, terrain roughness etc. 

Gaussian models have long tradition of their use for dispersion predictions of continuous, 
buoyant air plume originating from ground-level or elevated continuous sources of pollution. 
Decisive criterion for its choice for our purposes is computational effectiveness which guaran-
tees to solve the advanced data assimilation problems in real-time. Thorough control of radio-
activity balance and conservation should ensure acceptable accuracy of results. 

SGPM uses “source depletion” approach based on separation of the pure dispersion solution 
Cdisper (the terms S and β are zeros) and “removal” component given by the plume depletion 
factors fn

R , fn
F , fn

W  due to radioactive decay (R) and dry (F) and wet (W) deposition in depend-
ence on physical-chemical form of the nuclide n.  During all elemental shifts of “Gaussian 
droplets” the formulation  C = Cdisper × fn

R  ×  fn
F  × fn

W  is adopted (Pecha et al. 2007). 

The main objective of the modifications introduced into the SGPM model is synchronization 
of release dynamics with a given short-term meteorological forecast. The Czech meteorologi-
cal service provides online short term meteorological forecast (point and gridded data) and 
real observations. 

Scheme of the release dynamics have to be somewhat adopted to the hourly meteorological 
forecast. Real release dynamics is partitioned into equivalent number G of fictive one-hour 
segments of constant release source strength. Synchronization with hourly forecast of mete-
orological conditions is performed. Hourly segment of release is spread during the first hour 
as a “Gaussian droplet”. In the following hours of spreading according to available hourly 
meteorological forecast the droplet is treated as “prolonged puff” and its dispersion and deple-
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tion during the movement is simulated numerically by large number (∼ 25÷50) of elemental 
shifts. Each hourly segment g is consecutively modelled in its all hourly meteorological 
phases f (f=1,...,F(g) ) and output vector sTOTAL of values of interest is superposed from the 
particular segment-phase outputs s g, f as:  
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Transport of radioactivity is studied from the initial aerial propagation, deposition of radionu-
clides on the ground and spreading throughout food consumption towards human body. 

 
Figure 1: Deterministic model predictions (best estimate) for scenario from APENDIX. Left-
total deposition of 131I after 13 hours.  Right: Model prediction just 2 hours after the release 
start – see “best estimate” trajectory xTrb according to Eq. (8). Legend is valid for all figures. 

3. From deterministic calculations to probabilistic approach  

Recent trends in risk assessment methodology insist in transition from deterministic proce-
dures to probabilistic approach which enables generate more informative probabilistic an-
swers on assessment questions. Corresponding analysis should involve uncertainties due to 
stochastic character of input data, insufficient description of real physical processes by pa-
rametrization, incomplete knowledge of submodel parameters, uncertain release scenario, 
simplifications in computational procedure etc. Simulation of uncertainties propagation 
through the model brings data not only for the probabilistic assessment (see next figures 2 and 
3 that come out from scenario in APPENDIX), but also for another main task of analysis 
called assimilation of the model predictions with real measurements incoming from terrain.  

Table 1:  Model chain for probabilistic estimation of random quantities of interest    
 

Random             specific activities,          food contamination,            external irradiation:   
fields of             their time integrals        long-term evolution             cloudshine, groundshine, 
output               in air, deposition           of deposition,                      internal activity intake: 
values               on terrain, ....                resuspension, ....                 inhalation and ingestion 
                                        ↑                                    ↑                                       ↑ 
Release of    →    Probabilistic     →    Probabilistic           →          Probabilistic irradiation  
nuclides           Atm.Disp. Model       FoodChain Model                      doses estimation 
                                      ↑                                     ↑                                          ↑   
Number of                  
random model            1, … , M1                      1, … , M2                             1, … , M3 
parameters                
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Table 2: Components of random parameter vector Θ for atmospheric dispersion module. 
 

random  
parameter unit expressed  

inside code 
uncertainty 

bounds 
random  

parameter unit expressed  
inside code 

uncertainty 
bounds 

θ11: activity        
release s=1 

[Bq.h-1] Q =  c11⋅ Qb
11 

Qb
11 in f=1 

LU; c11∈ 
<0.31;3.1> 

θ31: wind 
speed       f=1 [m.s-1] V31= c31 ×Vb

31   
Vb

31 in f=1 
U ; c31∈ 

<0.5;3.0> 

θ12: activity     
release s=2 

[Bq.h-1] Q =  c12⋅ Qb
12 

Qb
12 in f=2 

LU ; c12∈ 
<0.31;3.1> 

θ32 : wind 
speed       f=2 [m.s-1] V32= c32 ×Vb

32  
Vb

32 in f=2  
U ; c32∈ 

<0.5;3.0> 

θ13: …    s=3 
………. 

θ1G: …   s=G 
[Bq.h-1]] next hourly segments s of  

radioactivity release  (if any) 
θ33: wind 
speed       f=3 [m.s-1] V33= c33 ×Vb

33   
Vb

33 in f=3 
U ; c33∈ 

<0.5;3.0> 

θ21 : wind dir- 
ection     f=1 [rad] ϕ=ϕb + Δϕ,  

Δϕ=c21*2π/80 
U ; c21∈ 

<-12.0;+12> 

θ34:          f=4 
………… 
θ3F :          f=F 

[m.s-1] wind speed in successive me-
teophases f (if considered) 

θ22 : wind dir- 
ection     f=2 

[rad] ϕ=ϕb + Δϕ,  
Δϕ=c22×2π/80 

U ; c22∈ 
<-12.0;+12> 

θ4 : horizontal    
dispersion [m] σy (r) = c4 ×  

σy (r)b
 

Ntrunc ; c4∈ 
<0.89;1.12> 

θ23 : wind dir- 
ection     f=3 

[rad] ϕ=ϕb + Δϕ,  
Δϕ=c23×2π/80 

U ; c23∈ 
<-12.0;+12> 

θ5 : dry depo 
velocity [m.s-1] vg(r) =c5 × 

vgb(r) 
LU ; c5∈ 

<0.91;1.10> 

θ24 :  …     f=4 
…….. 

θ2F            f=F 

[rad] wind direction in successive 
meteophases f (if considered) 

         Index b stands for “best estimate “ values; 
Distrb. type:  U ….     Uniform;   
                      LU ……LogUniform  
                      Ntrunc … Normal truncated 

s –  segment of radioactivity  release during sth hour from the release start; 
 f –meteophase (hour) after the release start;  Vb

 – wind speed at 10 m height;  
   
4.  Propagation of model parameter uncertainties  

Uncertainties of model parameters Θi relate to imperfections of both conceptual model (algo-
rithm limitation, simplifications during parametrization, stochastic nature of some submodel 
parameters, measurement errors of input data) and computational scheme (step of computa-
tion grid, averaging land-use characteristics, averaging times for dispersion parameters etc). 
Let Θ ≡ {Θ1, Θ2, …, ΘM }  denotes a vector of M random model parameters Θm  with corre-
sponding sequence of random distributions D1, D2, …, DM which are usually selected on the 
basis of commonly accepted agreement of experts (range, type of distribution, potential mu-
tual dependencies). The value of dimension M of the parameter vector Θ is in general large, 
for practical reasons the further reduction of number M should be done. Computational simu-
lation ℜSGPM based on SGPM approach enables to express random 3-D trajectory XTr (“parti-
cle”, sometimes called also background vector) according to the parametrization:   

                                   XTr  ≈ ℜSGPM(Θ1, Θ2, …, ΘM ; {αj
fixed }j=1, ... , J)                                  (3) 

αj
fixed stands for invariant fixed model parameters (hereafter omitted in notations). Sampling-

based method for UA consists in calculations of the kth trajectory realization (for each specific 
sample k of the random parameter vector θk), repeatedly in two steps: 

1) Generation of a particular kth sample of input vector: 
                                θk ≡ {θ1

k,..., θm
k ,…, θM

k }                                                              (4)  
       where θm

k is  kth realisation of the mth random parameter Θm . 

2) Propagation of the sample k through the model, it means the calculation of the corre-
sponding resulting kth realisation of the trajectory according to: 
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                                xTr
k = ℜSGPM (θ1

k,..., θm
k , … , θM

k)                                                (5a) 

or, specifically, according to the notation in Table 2:  

              xTr
k = ℜSGPM (c11

k,..., c1G
k ,c21

k , … , c2F
k ,c31

k , … , c3F
k, c4

k, c5
k)                    (5b) 

Adopted scheme of Monte Carlo modelling uses stratified sampling procedure LHS. Code 
HARP (more in (Pecha at al., 2009)) comprise interactive subsystem for generation of K LHS 
samples for various types of random distributions Dm of parameter vector Θ ≡ {Θ1,...,Θm,…, 
ΘM }. A certain technique for correlation control between components Θm is included. Resul-
tant mapping of pairs of vectors is given by: 

                                                [ xTr
k  ; θk ] k=1, … , K                                                                (6) 

Trajectory xTr
k is represented by N-dimension vector in N spatial nodes. Provided that the 

value of K is sufficiently high (several thousands), expression (6) offers right basis for: 
• Uncertainty analysis (UA) – statistical processing of the pairs can determine extent of 

the uncertainty on predicted consequences and yield various statistics such sample 
mean and variance, percentiles of the uncertainty distribution on the quantity given, 
uncertainty factors, reference uncertainty coefficients etc.   

• Sensitivity analysis (SA) – its strategies are applied depending on the settings (Saltelli 
et al.,2001) with further discrimination as factor screening (one-at-a-time experi-
ments), local SA ( partial derivations at a local point) and global SA (using typically 
sampling approach). Various techniques can be used providing different measures of 
sensitivity (scatterplots, regression and correlation analysis, rank transformations etc.). 

 

 
Figure 2: Sample mean from (6) (5000 sam-     Figure 3: Illustration of probabilistic assesment 
ples) of random trajectories (5b) for G=2, F=2   based on sampling (6) from (5b), G=2, F=2.                     
(stands for just 2 hours after the release start).    Isolines of probabilities of exceeding limit 
In contrast with deterministic Fig. 1 (right).        1.0 E+5 Bq.m-2 (just 2 hours after start). 
 
 
5.  Particle filtering for data assimilation approach in the early stage of accident 
Data assimilation represents the way from model to reality and can substantially improve the 
reliability of model predictions. Inevitable prerequisite for application of advanced statistical 
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assimilation techniques is foregoing UA which provides data for construction of covariance 
structure of model errors for a given release scenario.  

Prospective intervention actions with purpose to avert radiation exposure of population have 
to be introduced with regard to the type of accidental release scenario and evolution of a fail-
ure at its all phases. Each phase is characterised by its own time scale, predominated irradia-
tion pathways and specific countermeasures introduced for protection of persons. The DA 
process adapted in the later phases of accident was examined (e.g. Hofman at al., 2008, Pecha 
et al. , 2008). Nonlinear high dimensional state-space model of early stage of an accident 
makes DA procedures much harder than in the later stages.   

Figure 4: Part of the Early Warning 
Radiation Network of the Czech 
Republic around NPP Temelín. 

 

An attempt for real DA treatment 
requires further complementary ad 
hoc preconditions and developments, 
as follows. We shall assume conser-
vatively a delay of two hours in re-
covery of radiation monitoring. The 
first measurements from terrain are 
coming just two hours after the re-
lease start. Because of a certain in-

consistency between meteorological forecast and measurements (see Table 3), the shape of 
the corresponding accidental trajectory close to the source should correspond more likely with 
observations. Without more discussion, we use this subjective assumption and generate the 
“artificial measurements” on basis of shadow contour in Fig. 4. It belongs to the “observa-
tion” trajectory just 2 hours after the release start: 

        xTr
obs

 = ℜSGPM (c11
obs,c12

obs ,c21
obs ,c22

obs ,c31
obs ,c32

obs, c4
obs, c5

obs)                                  (7) 

The observations are simulated from the model using options c11
obs = c12

obs =0.5; c21
obs = c22

obs 
= 0.0 ; c31

obs = c32
obs = 1.0 ; c4

obs = c5
obs = 1.0. Corresponding best estimate values are ex-

tracted from the Table 3 (for wind directions and speed those values in brackets). Similarly, 
the “best estimate” trajectory (deterministic short-term prediction) can be expressed as: 

        xTr
b

 = ℜSGPM (c11
b,c12

b ,c21
b ,c22

b ,c31
b,c32

b, c4
b, c5

b)                                                         (8) 
 where  c11

b = c12
b =1.0; c21

b = c22
b = 0.0 ; c31

b = c32
b = 1.0 ; c4

b = c5
b = 1.0.   

The main achievement of investigations is integration of the trajectory model within the re-
cursively repeated steps of Bayesian filtering. From all possible advanced DA techniques was 
chosen particle filtering (PF), which has one significant attribute convenient to our SGPM 
trajectory model: The ensemble of state trajectories (particles) remain unchanged during the 
data (observations) update step and only their weights are updated. Thus, the history of each 
path is not lost and the next time update is straightforward. The PF originating from the se-
quential Monte Carlo method is applied here for simulation of the posterior distribution of the 
system state. The 3-D trajectories represent the “particles” and during the resampling, those 
particles having small weights with regard to the measurements are eliminated.  
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Tracking in Bayesian concept insists in recursive evaluation of the state posterior probability 
density function (pdf) based on all available information. We shall mention how to launch the 

here t1 stands for just 2 hours after the release start. 

m is simu-

rom 

recursive procedure from the same beginning of the incomplete scenario described in APEN-
DIX. The following tasks are executed: 

i) The assimilation process is initialized by determination of prior pdf (probability 
density function) p( X(t1) ) w
Let mention, that the sample mean in Fig. 2 and limits of exceeding in Fig. 3 can 
be now interpreted as expectations and other moments of the prior pdf. 

ii) Using measurements y(t1) incoming from terrain just at t1 , the marginal posterior 
density p( X(t1) ⎜ y(t1) )  using Bayes rule and PF resampling algorith
lated. The expectations of the posterior distribution illustrated in Fig. 5 are evi-
dently approaching close to the observation trajectory xTr

obs from (7) used for 
simulation of artificial measurements (see also the shadow contour in Fig. 4).  

iii) Next state transition probability function p( X(t2) ⎜ X(t1) ) describes the time up-
date from the posterior pdf for t1 forward to the next time t2 , which means f
hour 2 to hour 3 after the release start. The factors c23 and c33 are sampled, too. 

 
Figure 5:  Expectations of posterior pdf - step ii): for small values of covariance matrix of 
measurements (left) and high values (less accurate measurements) – see:Pecha et al., 2009b. 

t 

xtensive computations have validated the presented methodology to be a proper tool for 
of the toxic plume in its early phase of propagation. Ranking of the 

Finally, after finishing step ii), the original model prediction (Fig. 2, right) is modified (Fig. 
5). The step iii) of prolongation of pdf forward to the next time t2 represents entry to the nex
time step of Bayesian recursion when posterior pdf is determined using observations incom-
ing within the interval < t1 ; t2 >,  etc. More details are given in (Pecha et al., 2009b). 
 
6.  Persisting problems 
E
online Bayesian tracking 
model parameters relevant for each respective step of recursion is evident from Tab. 2. Still 
open remain some questions on availability of online measurements. More attention should be 
devoted to detailed analysis of origin the model parameters that are so far predominantly re-
lated to the SGPM parametrization (see (3) ). It is necessary to extract information about 
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X 

a hypothetical accidental scenario with ambiguous characteristics 
 the mo-

 

11.00 12.00 13.00 …. 

SGPM algorithm imperfections itself provided that sufficiently informative measurements are 
available. 

APPENDI

Definition of 
Real meteorological situation from March 31, 2009 is taken into consideration and
ment of a hypothetical accidental release is set to 10.00 UTC (see Table 3). Available real me-
teorological observations (in brackets ) measured at the point of NPP and short term meteoro-
logical forecast are somewhat inconsistent. Following ex post analysis can give a retrospec-
tive view on the atypical actual situations (their occurrence rate is surprisingly not negligible).  
Table 3: A hypothetical accidental release scenario of 131I , short-term meteorological forecast and 
real meteorological measurements (in brackets) for “point” of NPP Temelin ( 49°10'48.53''N × 
14°22'30.93''E), time stamp 20090331-1000 CET. 

CET hour 10.00 

activity release of 131I  Bq/h 5.6 4 7.9 4 8 × e+1 2 × e+1 0 0 …. 

wind direction 1),2) 95.0  ( 54.0 ) 1  84.0 5.0) 80.0 0.0) 01.0  ( 69.0 )  ( 6  ( 8 …. 

wind speed(1)  2.0  ( 3.8) 2.1  ( 3.0) 1.9  ( 3.8) 2.2  ( 3.8 ) …. 

Pasquill  atm. stabil.   A A B B …. 

1) … a  … blowing “from” (degrees ured clockwise from North) 
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